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Abstract 
This project aims to improve the analysis of cellular metabolism for diagnostics and 

therapy, using genome-scale metabolic models (GEMs) and self-supervised learning. The 

interconnected nature of cellular metabolism presents challenges in predicting systemic 

effects when specific reactions are inhibited through therapeutic interventions. We will 

develop an end-to-end pipeline for graph representation learning of GEMs, test the utility 

of low-dimensional embeddings for therapy and diagnostics, and build a user-friendly 

web platform for model training. The approach will be based on the integration of 

metabolic graph structure into variational autoencoders trained on large fluxomic data. 

Applications include classification of GEMs from healthy and disease states, metabolic 

stratification of tumours, and detection of lethal targets against pathogens.  

Introduction 
Cell metabolism is a highly interconnected network with thousands of reactions, many of 

which are attractive targets for therapy in a range of conditions, including diabetes, gout, 

and rare disorders such as phenylketonuria or Gaucher disease. In cancer treatment, 

metabolic drug targets have received increasing attention as tumours can display 

metabolic vulnerabilities that can be exploited for therapy [1]. In infectious diseases, 

several promising antibiotic treatments target specific reactions to disrupt the metabolic 

capacity of pathogens. However, the complex connectivity of cellular metabolism makes 

it challenging to predict the systemic effects caused by inhibition of specific reactions.  

Genome-scale metabolic models (GEMs) are a mathematical description of the 

connectivity of metabolic fluxes in an organism. Such models have been built for over 

3,000 microbial species and, recently GEMs have gained increased adoption to model 

human metabolism. A key development was the release of Recon3D, an all-

encompassing model of human metabolism that can be instantiated to specific cell types 

with ‘omics data [2]. This enables the construction of patient-specific models for 

personalized medicine and leverage computational approaches to analyse the complex 

interactions within an individual's metabolic network. 

From a mathematical perspective, a genome-scale metabolic model is a set of linear 

constraints that define a flux cone. The high-dimensionality of the flux space (>2,000 

dimensions) limits our ability to analyse the shape of the cone and its response to drug 

treatments, loss-of-function mutations, and other perturbations relevant for therapy and 

diagnostics. In a recent proof-of-concept study, we trialled the use variational 

autoencoders to compress the dimensionality of the flux cone while preserving structure 

[3]. These promising results offer a novel route for the analysis of GEMs based on self-

supervised training. 

Research Challenge 
Our general aim is to develop an improved framework for the analysis of genome-scale 

metabolic models. Our specific objectives are: 

1) Build an end-to-end pipeline for graph representation learning of genome-scale 

metabolic models, using a combination of autoencoders and the underlying graph 

describing the connectivity of metabolic fluxes. 



2) Test the utility of the low-dimensional embedding for a range of downstream 

supervised and unsupervised relevant tasks for therapy and diagnostics, using publicly 

available GEMs. 

3) Build a web platform for users to train our latent representation on their in-house 

genome-scale metabolic models. 

Data & Methodology 
The project will rely on well adopted packages for GEM analysis and simulation 

(COBRApy, COBREXA). Models will be retrieved from publications and the BiGG database 

[4]. For model training, we will generate a large corpus fluxomic data from specific GEMs. 

These consist of high-dimensional flux vectors sampled from the flux cone defined by 

each model; sampling will be performed with Markov Chain Monte Carlo (MCMC) 

methods using existing packages. 

In Objective 1, we will modify the variational autoencoder (VAE) in our recent work [3] 

to include the graph structure of the metabolic network. The expectation is that inclusion 

of connectivity between different flux features will improve the expressiveness of the 

learnt embeddings, and therefore produce more accurate low-dimensional 

representations that can employed for downstream tasks. As a graph backbone, we will 

utilize the Mass Flow Graphs we have introduced in a previous work for accurate 

prediction of gene essentiality with graph neural networks [5]. We will explore various 

model architectures, training strategies and data pre-processing techniques to improve 

the expressiveness and generalization ability of the embeddings. 

In Objective 2, we will focus on various relevant tasks, including: a) classification of GEMs 

obtained from healthy and disease states; b) metabolic stratification of tumour types 

from their GEMs; c) clustering of cell-type specific GEMs from single-cell transcriptomics; 

d) detection of lethal targets against microbial and fungal pathogens. 

In Objective 3, we will build a full stack web application that can readily interact with 

existing well-adopted GEM tools (RAVEN, COBRApy, COBREXA) to increase adoption by 

the community. The software will be aimed at end-users and offer a no-code platform 

for the analysis of GEMs in a low-dimensional embedding space. 

RRI/Ethical considerations 
Improving personalized therapy and diagnostics raises ethical concerns regarding its 

potential to deepen global health inequalities. High costs of sequencing and specialized 

treatments may widen the gap between high- and low-income nations, as affluent 

countries often pioneer personalized medicine initiatives, leaving poorer nations lagging 

behind. During the project we will explore the application of our tools to detect metabolic 

drug targets against pathogens with high prevalence in the developing world (Objective 

2d), such as M. leprae (leprosy), T. cruzi (Chagas disease), and P. falciparum (malaria). 

Genome-scale metabolic models for these pathogens are publicly available.  

Expected outcome & Impact 
The project will deliver a suite of data, models and software for the analysis of metabolism 

in disease. Our approach will provide a framework to distil the metabolic space into 

semantically rich vectors that can be used as a foundation for predictive modelling. This 

can potentially contribute to the discovery of new therapeutic targets or diagnostic 

biomarkers across a range of conditions, and contributes to the fast-moving body 

research at the interface of machine learning and personalized therapies. 
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